
CGAMES IEEE DUBLIN 2006 1

POSH Tools for Game Agent Development by
Students and Non-Programmers

Cyril Brom†, Jakub Gemrot†, Michal B́ıda†, Ondrej Burkert†, Sam J. Partington‡ and Joanna J. Bryson‡

Abstract— Agent based systems are becoming popular outside
the agents research community, among biologist, artists and in
the game industry. Yet tools are lacking that facilitate non-expert
agent developers building complicated agents for modelling and
systems. As a part of our own agent-based research programmes
we have been developing such tools. In this paper, we review
the progress made, highlighting issues of usability. Examples of
agents developed in these tools are also given, with an emphasis on
intelligent virtual combat agents situated in Unreal Tournament.

Index Terms— AI, Dynamic Planning, Life-Like Characters,
Programmability, Accessible AI

I. I NTRODUCTION

Building intelligent systems, like programming systems in
general, is hard. While some principles such as modularity are
widely agreed upon, even highly related questions such as how
to integrate these modules back into a coherent system, are not.
Standard multi-agent system techniques are formal and highly
distributed but unnecessarily complicated for modular systems
where the extent of the system is well bounded, as when it
composes a single autonomous agent like a game character or
robot. The problem of this complexity becomes apparent when
one tries to hire ordinary or even exceptional programmers to
create AI systems. Yet the ideal for the games industry would
be if skilled story writers for interactive dramas could directly
create — or even prototype or adjust — the characters they
design into their narratives.

We have been working on the developing and extending
the notion of reactive ordynamic plansas the key integration
technique for an intelligent system. The advantage of these
plans is that they can be developed from simple sequences
of actions and prioritised lists of goals — skills accessible to
most people as they are fundamental to everyday planning and
scripting.

Based on this approach, we have developed several com-
plex, apparently cognitive agents, as well as tools that facilitate
such construction. In this paper, we review our progress in
developing these tools, with a particular focus on their educa-
tional aspects. Examples of agents developed in the tools will
be also given, primarily VR game-playing agents situated in
the video game Unreal Tournament (UT) [32], although related
systems have been and are being developed for applications
from autonomous robots to scientific social simulations. In
this paper, the review of each advance will necessarily be

†Department of Software and Computer Science Education, Charles Uni-
versity, Prague 118 00, Czech Republic
‡Artificial models of natural Intelligence, University of Bath, Bath BA2

7AY, United Kingdom

brief, however we reference more complete descriptions of
the individual projects which have been published elsewhere.

Our primary objectives for this paper are to present an
overview and to summarise our main lessons learned to date.
We start with detailing the toolkits’ requirements, continue
with describing our methodological approach, and then de-
scribe the tools themselves, including example agents.

II. GOALS AND RELATED WORK

Currently, our main target audiences for our toolkits have
been undergraduate computer science students (Prague) and
graduate-level researchers in social and behavioural sciences
(Bath). For both groups of users, we hope that by engaging
them in directly exploring agency we will contribute to both
their understanding of their discipline and at the same time
provide them tools to be used in their future employment.
Building agents situated in dynamic, potentially antagonistic
environments that are capable of pursuing multiple, possibly
conflicting goals not only teaches students about the funda-
mental nature and problems of agency but also encourage
them to develop or enhance programming skills. Although
academics are our most readily accessible testers, we expect
our techniques to be of use to professionals from artists
through games engineers. Many of our tools are available
freely on line, and we have recently installed basic bug
tracking facilities. In essence we want to expand access to
AI as a tool for research, entertainment and education.

Toolkits to meet this aim must fulfill several requirements:

1) They must provide tools for facilitating agent develop-
ment. These tools must allow for makingsimple things
simple, and complex things possible. In other words, a
non-programmer should be facilitated in building simple
agents, while more experienced developers should be
able to increase their agents’ complexity or capabilities.
The best way to meet these desiderata is with a modular
architecture, iterative design practice and an easy-to-
cope-with integration technique. Auxiliary tools such as
a debugger or a graphical behavioural editor should also
be available.

2) In a related point, toolkits should facilitate rapid proto-
typing, so that a writer or creator can try a number of
different scenarios quickly, and so that a full character
with a number of goals and/or scenes can be fleshed out
in a reasonable amount of time.

3) They should provide a graphical virtual environment.
Visualisation is vital to understanding agency. Most
people have a great deal of difficulty reasoning about



CGAMES IEEE DUBLIN 2006 2

the consequences of interacting parallel goals and be-
haviours in a single agent; how an agent will operate
with a three dimensional, real-time world, where actions
once committed cannot be recalled; and particularly with
how interacting agents can influence and interfere with
each other, even in simple ways such as attempting
to take the same physical location. Visualisation at
least assists with debugging, and sometimes established
social reasoning makes recognition if not prediction of
problems relatively straight forward. The visualisation
environment can either be provided built-in, or as a
stand-alone application with a provided API.

There are several commercial, relatively user-friendly toolkits
which at least begin to fulfil these requirements available. For
example, AI.Implant [3], a middleware for building complex
computer game agents, or Behavior [29], which is a Softimage
plug-in for controlling behaviour of virtual actors in movies.
Such systems tend to be too expensive for academic and entry-
level purposes.

Several purely educational toolkits exist for learning pro-
gramming by means of agents, such as Alice [2]. Unfor-
tunately, these allow for building only simple agents with
entirely scripted behaviour. NetLogo is a popular tool for
agent-based modelling, partly because it meets the rapid-
prototyping desiderata above. It has also recently become
extendible due to a Java API [33]. However, this does not
facilitate creating engaging single VR agents, which we see
as a powerful and vital mechanism both for creating truly
animal-like systems and holding the interest of the average
(rather than the exceptional) student. Similar problems hold
for agent development toolkits specially intended for artists,
such as Movie Sand BOX [19].

Robust and formally well-founded tools for agent develop-
ment do exist, such as the general-purpose Jack [17], or the
powerful cognitive modelling languages like Soar [28] and
ACT-R [4]. However, it is not easy for entry-level program-
mers to create engaging human-like agents in these architec-
tures. Further, even for professional programmers, building
intelligence in such ‘heavy’ systems takes a good deal of time.
Such systems also tend to take too much CPU for complex
societies or game play.

Thus there is still a need for systems which provide acces-
sible development of virtual-reality animal-like and humanoid
characters, but also allow extensions into full programming
languages. What we propose as a basic starting point is a
system built on the high-level yet powerful dynamic program-
ming language python. Python is a scripting language which
allows for rapid prototyping, yet it has access to extensive
libraries which allow for powerful and detailed computation.
Beyond this though, agent building requires special idioms
or design patterns, and a character-based AI development
platform should provide for these.

III. A PPROACH: BEHAVIOR ORIENTED DESIGN

We have taken as a starting point Behavior Oriented Design
(BOD) [10, 11]. This is a modular technique that draws both
from object-oriented design (OOD) and behavior-based AI

(BBAI), with additional features for integrating an intelligent
system. From BBAI, BOD takes the principle that intelligence
is decomposed around expressed capabilities such as walking
or eating, rather than around theoretical mental entities such
as knowledge and thought. Each module supports a related
set of expressed behaviours calledacts, whatever sensing is
necessary to control such acts, and whatever memory and
learning is necessary to inform and disambiguate such sensing
and acting. For example, the act of going home requires
being able to sense and recognise the current location, which
requires remembering previous routes or some other form
of map. A diversity of standard machine learning techniques
can be included inside a single agent: BOD supports efficient
learning by allowing per-module specialization of techniques
and representations.

From OOD, BOD takes both the object metaphor (BOD
modules are built as objects in an object-oriented language
such as Java, C++, CLOS or in the present case python) and
an agile, iterative development process [c.f. 5]. BOD consists
of two sets of heuristics. The first are for the initial design of
an agent, and the second are for recognising — after a period
of development — optimisation opportunities for simplifying
the agent’s code. In other words, BOD encourages regular
refactoring so that the agent remains as easy to expand and
maintain as possible. Details of these heuristics can be found
elsewhere [10, 12].

The core of this simplification process is a good mechanism
for integrating the behaviour modules that compose an agent.
Modular decomposition has no benefit if the process of making
certain the modules can execute without interfering with
each other is more complicated than building a homogeneous
architecture would have been in the first place. Unfortunately,
this problem plagued early BBAI approaches such as sub-
sumption architecture [9] and spreading activation networks
[22], making them difficult to scale. BOD provides a relatively
simple action-selection mechanism for providing behaviour
arbitration, which we describe next.

A. POSH Action Selection

BOD uses Parallel-rooted, Ordered, Slip-stack Hierarchical
(POSH) dynamic plans for action selection. These allow the
specification of an agent’s goals and priorities, or in other
words the contexts in which an agent acts. The primitives of
these plans are the acts supported by the library of behavior
modules just described (referred to asthe behavior library), as
well as set of sense primitives provided by the same library.
These sense primitives inform the plans at decision points
about the current context.Contexthere is both environmental
(e.g. visible food, heard enemies) and internal (e.g. remem-
bering the way home, feeling hungry or happy.)

Besides these two primitive types, there are three types of
POSH planning aggregates: simple sequences, competences
and drive collections. Thesequencefunctions as expected; the
drive collection is a special form of competence that serves as
the root of the plan hierarchy, we return to this below.

Thecompetenceis the core of a POSH plan. It is an instance
of a fundamental AI design pattern, which we refer to as a



CGAMES IEEE DUBLIN 2006 3

basic reactive plan[10]. This is essentially a small, prioritised
set of productions. Aproduction is a condition-action pair
which forms the core of most expert systems and cognitive
modelling architectures. The idea is that AI can be described
as a look-up of an action based on the current context1.
The problem is that specifying such context in sufficient
detail to be unambiguous for an agent with multiple goals
in a complicated, dynamic environment is either tedious and
cumbersome (for a human programmer) or computationally
intractable (for machine learning or planning.) By using a
hierarchical structure, we can assume we know a large amount
of the context by the fact we are even considering this
particular plan fragment. For example, the agent has already
realized that it is hungry and there are bananas around, now
it just needs to peel one. Thus a competence only needs
to express how to consummate one particular subgoal. By
assuming the rules are prioritised, we can further assume that
for any particular step of the plan, no better action closer to
consummating goal is a available, or it would already have
been executed. Thus for each potential action, the only thing
that the context needs to describe is not whether itshouldbe
performed, but rather only whether itcan be.

Because POSH plans are hierarchical, each ‘action’ as de-
scribed above in a competence may be primitive acts supported
by the behaviour library, or they may in fact be another
competence or a sequence. At the root of this hierarchy
is a special competence called adrive collection which is
executed on every program cycle to ensure that there is no
more important goal the agent should be attending to than the
one it is currently attempting to complete. The drive collection
also supports enough state such that goals can be pursued in
coarse-grain parallel. Thus an agent could for example stand
up every few seconds and look around, while spending most
of its time concentrating on building a fire.

To small extent, POSH plans resemble languages built upon
BDI architecture, e.g. JACK Agent Language [17]. However,
POSH is especially designed for non-agent experts, which
means that it does not have some advanced BDI features (e.g.
pre-defined meta-level planning), but on the other hand it is
easier for the intended audience to cope with. What makes it
easy to design is that all of its aggregates can be designed
initially as sequences. Competences are however capable of
executing actions out of sequence (skipping or repeating
elements) as needed to respond appropriately to the uncertain
consequences of behaviour in a dynamic environment.

IV. PLATFORMS

Based on the BOD approach and the POSH action selection
mechanism, we have created three development systems fulfill-
ing the requirements outlined in Section II. The first two each
consist of two applications — first a pyPOSH action selection
engine that implements a POSH mechanism and allows for
BOD design [20], and second an environment for running
experiments. The first of these pairings is BOD/MASON,
which allows artificial life simulations. The second, Pogamut,

1Many machine-learning approaches to AI make the same assumption and
call the lookup structure apolicy, which they attempt to learn.

is a platform integrating pyPOSH with the Unreal Tournament
3D environment and providing several development tools. The
third system, IVE (for “intelligent virtual environment”), is a
stand-alone application which is a complete simulator of large
virtual worlds inhabited by tens of virtual humans [7]. We
describe these three systems below.

A. PyPOSH and BOD/MASON

PyPOSH2 is a POSH action selection mechanism built in
the python language. It can be edited with the standard POSH
plan editor, ABODE, and can be connected to any arbitrary
system or virtual environment, e.g. a robot or an agent-based
modelling tool. We have recently integrated pyPOSH with
the agent-based modelling toolkit MASON [21], producing
BOD/MASON [13]. This has two advantages: for novice agent
programmers, it provides a platform and basic behavior li-
braries for simulating animal-like behaviour — BOD/MASON
comes with a sheep/dog demo illustrating how different agents
can be created with different POSH plans and the same behav-
ior library. For agent-based modellers, BOD/MASON supports
making more elaborate or individuated agent intelligence than
most platforms, such as MASON on its own or NetLogo.

Fig. 1. A screenshot of BOD/MASON running the sheep/dog demo.

Fig. 2. A screenshot of ABODE editing a sheep’s POSH plan.

2pyPOSH and ABODE can be downloaded from http://www.
bath.ac.uk/comp-sci/ai/AmonI-sw.html. The pyPOSH distribution includes
BOD/MASON and also another set of UT libraries (not Pogamut), which are
described further below.



CGAMES IEEE DUBLIN 2006 4

B. Pogamut

To provide additional tools facilitating games development,
we have developed Pogamut3 middleware and integrated it
with pyPOSH and UT via the Gamebots interface [1]. The
system architecture is depicted in Fig. 3. Each agent is treated
as a triple (avatar, behaviors, plans), whereavatar is merely
a body driven in UT,behaviors are the set of behavioral
modules in python maintained by Pogamut andplans is the
set of plans by which pyPOSH controls behavioral modules.

The following tools are included in Pogamut:

• a simple agent management system,
• a debugger and a development environment for con-

trolling agent’s properties and communication with the
environment (Fig. 4),

• a graphical editor for behaviors and dynamic plans called
ABODE (Fig. 4), and

• a set of auxiliary class and basic behaviors, e.g. the
navigation module.

The system can manage multiple agents simultaneously and
can be easily plugged into another virtual environment, pro-
vided only with a gamebots-like interface (API) to that envi-
ronment.

Fig. 3. Pogamut system architecture.

Fig. 4. Pogamut GUI: 1—the control pane. 2—the POSH log. 3—the
Gamebots communication log. 4—the agent’s properties. 5—the manual
command pane.

3Pogamut can be downloaded from http://carolina.mff.cuni.cz/∼gib/. UT99
should be bought; it costs about 10 Euro.

In academia, UT with Gamebots have been used in several
research projects already [18, 23], which makes it valuable
for comparing AI approaches from different laboratories. The
goal of Pogamut is to extend it to create a platform that can
be used extensively by students and new programmers.

C. IVE

IVE4 is a stand-alone Java framework and middleware sup-
porting development of virtual human-like agents [7] (Fig. 5).
IVE itself already includes development tools, i.e. a debugger,
a neat GUI, and the action selection engine, which is based on
a POSH extension. Virtual environments as well as behaviour
of agents is specified in external XML and Java files.

IVE is specifically intended for simulations of large envi-
ronments, which is its most notable distinction from pyPOSH
/ Pogamut (one can control hundred of actors in IVE, for
example). There are several non-trivial issues stemming from
large environments [detailed in 7] and the most features of
IVE are designed to cope with these. These include:
• IVE uses the level-of-detail technique for automatic

simplification of the simulation in unimportant places.
Contrary to its typical use in the domain of computer
graphics, we exploit this for simplifying the space and
actors’ behaviour [30].

• IVE exploits a knowledge representation that allows for
adding new objects and actions into the environment in
the runtime and for controlling actors both as autonomous
agents or from a centralised director.

IVE is not the only recent work using LOD for behaviour
[see e.g. 24]. Unlike other approaches, our technique is ap-
plied directly to the planning mechanism, which allows for
gradual and robust simplification of the simulation that to our
knowledge has not been addressed previously. For example,
in our bar-drinking scenario, we allow for 4 degrees of detail
of bar behaviour for each bar actor.

IVE can be used (and is being used)as is, both as a research
and an educational platform. Current research includes:
• investigating level-of-detail AI techniques,
• simulating a virtual company
• augmenting IVE with adrama managerfor the purpose

of an educational virtual game in civics. Drama manager
is a component for controlling agents’ top-level goals
according to a given story-plot (specified by Petri Nets
as detailed in [8].)

V. EXAMPLE PROJECTS

We have been using BOD-based systems on variety of
projects, from controlling mobile robots to simulating primate
task learning. In this section, we illustrate the systems’ po-
tential on three projects concerning gaming agents’ AI. We
start with a description of a gaming agent capable of juggling
multiple goals that plays capture the flag. Next we describe
an agent with an emotional module, which extends POSH
action selection with an additional control layer. Finally we
illustrate that our approach can be scaled for synchronising

4IVE can be downloaded at http://urtax.ms.mff.cuni.cz/ive.



CGAMES IEEE DUBLIN 2006 5

Fig. 5. A screenshot from IVE restaurant scenario. Miners and a waiter are
depicted. Notice, there are tens of such actors in the scenario and yet the
simulation runs on a single PC in a timely fashion. The pane on the right
depicts the world structure.

two gaming agents. All these projects have been conducted
by undergraduate students, which illustrates the tools’ acces-
sibility and educational potential.

A. Capture the Flag

The goal of this project was to test whether BOD scaled
well for the agents acting in complex gaming environments,
as well as ensuring that undergraduates can learn to use BOD.
The full iterative development of this capture-the-flag gaming
agent for Unreal Tournament is documented elsewhere [26].
The agent was coded using python and pyPOSH [20] directly,
not with Pogamut. A slightly modified version of this agent
(which can play in two-person teams) is currently distributed
with pyPOSH.

Partington wrote a two-layer behaviour library, consisting
first of four modules for expressed behaviour:movementand
combat (behave as per their names),status (contains state
regarding health level, weapons held etc.) and the class con-
taining someprimitives for UT communication. Additionally,
there are three modules dedicated to maintaining internal state
useful for more than one of the expressed behavior modules
(e.g. information about position). He also developed one of the
most intricate POSH plans to date (see Fig. 6) which allowed
the agent to both attack and defend as necessary, sometimes
at the same time (e.g. strafing an attacker while returning a
flag to base). However, some of the complexity of the final
bot plan was unnecessary — dedicated to timing out outdated
memories. This indicates we need to clarify idioms dealing
with memory and time to improve the BOD framework.

B. Emotional gaming agent.

In modern games, the key feature is agentsbelievability,
which simply stated meansthe extent to which the players
think the agents look and behave how the players expect. It
includes whether the agent acts like a human (if it is human-
like), perceives only things a human could perceive, etc. Note,

Fig. 6. A high-level view of Partington’s capture-the-flag POSH plan showing
the extent and limits of plan depth necessary for a complete game agent. Plan
details, while not legible here, are available elsewhere [26]; the complete plan
is also included in the (free) pyPOSH download.

however, that believability is more related to imitation than to
rational reasoning or psychologically plausibility.

The hypothesis behind this project was that expressing
emotions at the behavioural layer (i.e. not only by facial
changes) may increase believability of a first-person shooter
(FPS) game agent. We developed the emotional UT agent
using the Pogamut platform. An emotional module is added
in the BOD architecture. The module is based on Champan-
dard’s model [16], which is intended for such game agents.
Champandard’s model is partially based on Plutchik’s psycho-
logically grounded model [27]. Champandard also prototyped
an emotional game agent, however ours is more elaborate.

The emotional model uses eight emotions in complementary
pairs:pride – shame, fear – anger, joy – sorrow, amusement
– weariness. It also exploits moods, feelings and sensations,
which are other affective states of “minds”. The outcome of
the emotional module is threefold. First, different emotions
enforce different dynamic plans (and thus behaviors). Second,
emotions influence agents’ properties (i.e., shooting accuracy).
Third, the agent gesticulates and comments on the situation
according its emotional state.

Preliminary tests reveal first that the model is too compli-



CGAMES IEEE DUBLIN 2006 6

cated and overly psychologically plausible for the purpose
of a UT agent. Since a typical UT agent lives for tens of
seconds, the agent does not have five minutes for grief, even
if that is more human. Second, we have realized that it is
hard to parameterise the model without habituation, which is
a form of adaptation to repetitive stimulation by increasing
probability of ignoring it. Although POSH supports primitive
habituation, neither our nor Champandard’s model works
with it. Appropriate dynamics are vital even for a simple,
non-plausible emotional model [31], thus BOD should also
probably be extended with an pattern for supporting such
state. Third, it was extremely simple to layer emotions upon
pyPOSH as well as implement different plans for expressing
different emotions, which demonstrated scalability of the basic
BOD architecture. We now plan to simplify the model and
to conduct a psychological study of players playing against
agents with and without emotions.

C. Agent Twins

Several FPS platforms include ateam deathmatchmode,
where agents and players fight in teams against each other.
Although agents in one team might cooperate, this is not
always the case. In recent FPS games, cooperation often occurs
accidentally as an ‘emergent’ phenomenon only. The goal of
this project was to develop agent twins that cooperate in a
decentralised manner (i.e. each twin is self controlled; there
is no leader) and test whether the cooperation is fruitful.
Additionally, we wanted to verify POSH/BOD approach in
a multi-agent scenario5. The twins have been developed on
the Pogamut platform. Generally, they cooperate in two ways:
(a) they perform some tactical operations, and (b) they inform
each other about positions of objects and other agents. Finally,
we have tested the twins of type (a), and (b), and the twins
that do not cooperate at all in the deathmatch against each
other and against original UT bots (who do not cooperate).

The tests surprisingly showed that cooperation by informa-
tion passing (b) was fruitful, but that of tactical operations
(a) was not. We think the reason is that our cooperation was
intended to be plausible. However, the deathmatch in UT is
not plausible at all; UT is not a realistic combat simulator. We
have stumbled here on another “plausibility — believability”
tension. We have also demonstrated that tests themselves can
be easily managed in the Pogamut system, since pyPOSH is
flexible enough to allow for simply switching on/off different
behaviours and types of cooperation.

We have also shown that POSH does not cope well with ex-
pressing of certain more complicated behaviours, particularly
the human adult capacity for finishing (or at least putting into
order) a current task when motivation has switched so that
another task is now the primary goal. This is a basic problem
for dynamic planning. See [6] for details; some of these are
being addressed in IVE.

We plan to conduct a study for more than two agents and to
augment this work with some aspects of centralised reasoning

5The version of pyPOSH currently distributed includes a two-agent (offence
and defence) team version of Partington’s UT code, developed at Bath by
Steve Couzins.

and classical planning, which has recently attracted gaming
industry attention (e.g. [25]). The project is detailed in [15].

VI. SUMMARY ; PRESENT ANDFUTURE WORK

In this paper, we briefly introduced several agent-based
development tools — BOD/MASON, Pogamut and IVE.
These are systems which provide entry-level development
humanoid and animal-like characters, which can be used by
students and other non-professional programmers. The systems
are extendible, grounded in standard programming languages.
We have demonstrated this in the described research. This
scalability is a notable distinction from similar toolkits.

We have at least a dozen finished students’ projects using
these platforms, and more in progress. These projects not only
demonstrate that the systems can be used by the students,
but also verify that BOD and POSH, which the projects and
platforms are built upon, are accessible, flexible and scalable.
We have also used the platforms for education of non-AI
experts (including artists).

In addition to the observations made earlier on improving
BOD and/or POSH, current limitations of our systems include
that we have not tested the platforms extensively on non-AI
experts yet. In IVE, we do not have a neat editor yet, which
makes specifying new virtual worlds and behaviour of agents
slightly complicated for non computer scientists. The editor is
current work. In Pogamut, perhaps the main problem is that it
relies on Gamebots interface [1], which limits the amount of
information passed from UT. Additionally, Gamebots code is
not well optimised and has several bugs. Rewriting Gamebots
is another work in-progress; we have already fixed some of
the bugs. We also plan to incorporate Gamebots UT 2007.

ACKNOWLEDGEMENT.

This work is partially supported by several grants. For
Cyril Brom and Prague GA UK 351/2006/A-INF/MFF and
“Information Society” 1ET100300517. For Joanna Bryson and
Bath the EPSRC GR/S79299/01 (AIBACS). Jan Drugowitsch
and Tristan Caulfield have assisted with BOD/MASON as
developers and Hagen Lehmann as a naive tester.

REFERENCES

[1] Adobbati, R., Marshall, A. N., Scholer, A., and Tejada,
S.: Gamebots: A 3d virtual world test-bed for multi-agent
research. In: Proceedings of the 2nd Int. Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Mon-
treal, Canada (2001)

[2] Alice 3D Authoring system. Alice v2.0. Carnegie Mellon
University. Project homepage: http://www.alice.org/ [4th
Aug 2006]

[3] AI.implant. EngenuityTechnologies, Inc. Product home-
page: http://www.biographictech.com/ [4th Aug 2006]

[4] ACT-R. A cognitive architecture. ACT-R Research Group.
Carnegie Mellon University Project homepage: http://act-
r.psy.cmu.edu/ [11th Aug 2006]

[5] Extreme Programming Explained: Embrace Change. Ad-
dison Wesley (1999)



CGAMES IEEE DUBLIN 2006 7

[6] Brom, C.: Hierarchical Reactive Planning: Where is its
limit? In: Proceedings of MNAS: Modelling Natural Action
Selection. Edinburgh, Scotland (2005)

[7] Brom, C., Lukavsḱy, J., Seŕy, O., Poch, T., Safrata, P.:
Affordances and level-of-detail AI for virtual humans. In:
Proceedings of Game Set and Match 2, Delft (2006)

[8] Brom, C., Abonyi A.: Petri-Nets for Game Plot. In:
Proceedings of AISB: Artificial Intelligence and Simulation
Behaviour Convention, Bristol (2006) III, 6–13

[9] Brooks, R.: Intelligence without reason. In: Proceedings
of the 1991 International Joint Conference on Artificial
Intelligence, Sydney (1991) 569595

[10] Bryson, J.: Intelligence by Design: Principles of Modu-
larity and Coordination for Engineering Complex Adaptive
Agents. PhD thesis, Massachusetts Institute of Technology
(2001)

[11] Bryson, J., Stein, A.L.: Modularity and Design in Reac-
tive Intelligence. In: Proceedings of IJCAI’01 (2001)

[12] Bryson, J.: The Behavior-Oriented Design of Modular
Agent Intelligence. In: Mueller, J. P. (eds.): Proceedings
of Agent Technologies, Infrastructures, Tools, and Appli-
cations for E-Services, Springer LNCS 2592 (2003) 61-76

[13] J. J. Bryson, T. J. Caulfield, and J. Drugowitsch, “In-
tegrating life-like action selection into cycle-based agent
simulation environments,” inProceedings of Agent 2005:
Generative Social Processes, Models, and Mechanisms,
M. North, D. L. Sallach, and C. Macal, Eds. Chicago:
Argonne National Laboratory, October 2005.

[14] Bryson, J.J., Prescott, T.J, Seth, A.K. (edited conference
proceedings): Modelling Natural Action Selection: Pro-
ceedings of an International Workshop. AISB, UK (2005)

[15] Burket, O.: Unreal Tournament Twins. Bachelor thesis.
Charles University in Prague, Czech Republic (2006) (in
Czech)

[16] Champandard, A.J.: AI Game Development: Synthetic
Creatures with Learning and Reactive Behaviors. New
Riders (2003)

[17] JACK toolkit. Agent Oriented Software Group. Project
homepage: http://www.agent-software.com/shared/home/
[4th Aug 2006]

[18] Kaminka, G. A., Veloso, M. M., Schaffer, S., Sollitto,
C., Adobbati, R., Marshall, A. N., Scholer, A. and Tejada,
S., “GameBots: A flexible test bed for multiagent team re-
search,”Communications of the ACM, 45(1):43–45 (2002)

[19] Kirschner, F.: Movie Sand BOX. Project homepage:
http://www.moviesandbox.com/ [4th Aug 2006] (2006)

[20] Kwong, A.: A Framework for Reactive Inteligence
through Agile Component-Based Behaviors. Master’s the-
sis, Department of Computer Science, University of Bath
(2003)

[21] S. Luke, G. C. Balan, L. Panait, C. Cioffi-Revilla, and
S. Paus, “MASON: A Java multi-agent simulation library,”
in Proceedings of Agent 2003: Challenges in Social Sim-
ulation, D. L. Sallach and C. Macal, Eds. Argonne, IL:
Argonne National Laboratory, 2003, pp. 49–64.

[22] Maes, P. The agent network architecture (ANA). In:
SIGART Bulletin, 2 (4) (1991) 115-120

[23] Muñoz-Avila H., Hoang H.: “Coordinating Teams of

Bots with Hierarchical Task Network Planning,” inAI
Game Programming Wisdom I, S. Rabin, Ed. Charles
River Media, Inc., Hingham, Massachusetts (2006)

[24] O’Sullivan C., Cassell J., Vilhjálmsson H., Dingliana J.,
Dobbyn S., McNamee B., Peters C., Giang T. “Level of
Detail for Crowds and Groups,” inComputer Graphics
Forum, 21(4):733–742 (2002)

[25] Orkin, J.: 3 States and a Plan: The AI of F.E.A.R. Game
Developer’s Conference Proceedings. San Francisco, CA
(2006)

[26] Partington, S.J., Bryson, J.J.: The Behavior Oriented
Design of an Unreal Tournament Character. In: Proceedings
of IVA’05, LNAI 3661, Springer (2005)

[27] Pluchick, R.: Emotion: A Psychoevolutionary Synthesis.
Harper and Row, New York (1980)

[28] Soar architecture. University of Michigan, USA. Project
homepage: http://sitemaker.umich.edu/soar [4th Aug 2006]
(2006)

[29] Softimage/Behavior. Softimage Co. Avid Technology.
Homepage: http://www.softimage.com/ [4th Aug 2006]

[30] Seŕy, O., Poch, T., Safrata, P., Brom, C.: Level-Of-
Detail in Behaviour of Virtual Humans. In: Proceedings of
SOFSEM 2006: Theory and Practice of Computer Science,
LNCS 3831, Czech Republic (2006) 565–574

[31] E. A. R. Tanguy, P. J. Willis, and J. J. Bryson, “A
dynamic emotion representation model within a facial an-
imation system,”The International Journal of Humanoid
Robotics, 2006.

[32] Unreal Tournament. Epic Games, Inc. Product homepage
http://unrealtournament.com [4th Aug 2006]

[33] Wilensky, U. NetLogo. Center for Connected
Learning and Computer-Based Modeling. Northwestern
University, Evanston, IL. Project homepage:
http://ccl.northwestern.edu/netlogo/ [4th Aug 2006]
(1999)

Cyril Brom is a PhD candidate situated at Charles
University, Prague. His research interest is in
modelling artificial environments and behaviour of
human-like artificial agents. Additionally, he teaches
courses on modelling and computer games develop-
ment and supervises about a dozen undergraduate
students, whose theses concern gaming AI. He holds
Magister (Master equivalent) in computer science
and optimisation from the Faculty of Mathematics-
Physics, Charles University in Prague.

Jakub Gemrot is a Magister (Masters equivalent)
candidate situated at Charles University, Prague. His
interests are artificial environments and software en-
gineering. He holds a Bachelors in computer science
from the Faculty of Mathematics-Physics, Charles
University in Prague.



CGAMES IEEE DUBLIN 2006 8

Michal B ı́da is a Magister (Masters equivalent) can-
didate. His interests are artificial intelligence in com-
puter games, especially those featuring 3D virtual
environment, artificial emotions and psychology. He
holds Bachelor in computer science from Faculty of
Mathematics-Physics, Charles University in Prague.

Ondrej Burket is a student of the masters program
at Charles University, Prague. His main interest
is in gaming artificial intelligence, his last work
concerned a couple of cooperating agents in UT. He
holds Bachelor degree in general computer science
from the Faculty of Mathematics-Physics, Charles
University in Prague.

Sam Partington undertook a major evaluation of
Behavior Oriented Design as part of studies at the
University of Bath. His interests include both the
practical and theoretical aspects of this methodol-
ogy and of AI in general. Having obtained a BSc
from Bath in 2005, he currently works in Software
Development for RM Consultants, a company in
Abingdon, Oxfordshire, UK.

Joanna Bryson lectures computer science at the
University of Bath; she founded her research group
there in 2002 following a postdoc in the Primate
Congitive Neuroscience Laboratory at Harvard. Her
research interests include increasing access to build-
ing intelligent systems and using these techniques
to model intelligence as found in nature. She holds
a BA in Psychology from Chicago, Masters in AI
and Psychology from Edinburgh, and a PhD from
the MIT AI Laboratory.


