
Working with Pogamut

Towards fast prototyping of IVA's behavior:
Pogamut

Ondřej Burkert, Rudolf Kadlec, Jakub Gemrot, Michal Bída, Jan Havlíček, Martin Dörfler, Cyril Brom

Charles University in Prague, Faculty of Mathematics and Physics
Dept. of Software and Computer Science Education, Prague, Czech Republic

ondra@atrey.karlin.mff.cuni.cz
http://artemis.ms.mff.cuni.cz/pogamut

[1] Unreal Tournament.Epic Games, Inc.Product homepage http://www.unrealtournament.com [4th Sep
2007]
[2] Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.:Gamebots: A 3d virtual world test-bed for
multi-agent research. In: Proceedings of the 2nd Int. Workshop on Infrastructure for Agents, MAS, and
Scalable MAS, Montreal, Canada (2001)
[3] Bryson, J.:The Behavior-Oriented Design of Modular Agent Intelligence. In: Mueller, J. P. (eds.):
Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services, Springer
LNCS 2592 (2003) 61—76
[4] Jboss Rules, http://www.jboss.com/products/rules [4th Sep 2007]

Main contribution
Pogamut provides an IDE and an
auxiliary library for fast creation
of IVA's behavior in virtual world
of Unreal TournamentTM 2004[1].
Pogamut uses new version of
popular GameBots[2] interface
and integrates a reactive planner
POSH[3].

Pogamut features and development
Pogamut supports three main stages of IVA's creation. Each stage
is supported by following features:

 Implementation – core Java library of sensomotoric primitives
• Memory that stores sensory information
• Functional primitives for the control of IVA’s body
• Inventory to manage items picked up by the agent
• Methods for moving around the map that solve
 navigation issues, including A*

Pogamut currently supports development in:
● Java, POSH[3], Python
● and possibly more languages with Java Script API binding

 Debugging and tuning – Plugin for NetbeansTM IDE
● List of Unreal Tournament servers
● List of running IVAs
● Introspection of IVA's variables
● Log viewers – logs allow filtering
● Bot remote control – arrows allow you to move the IVA
● Server control – change map, save replay of the game etc.

 Validation – binding with JBoss RulesTM [4] rule engine
● Experiments defined by declarative rules are suitable for testing
 IVA's behavior in different scenarios

Acknowledgment:
This work was supported by grant GA UK 1053/2007/A-INF/MFF, Research Project of the Ministry of
Education of the Czech Republic No. MSM0021620838 and by grant "Information Society"
1ET100300517.

Architecture
• Unreal TournamentTM 2004 – commercial game used as a virtual

world. It is extensible and contains environmental editor.
• Gamebots 2004 – built-in server in the UT04, which export

information from UT04 for the Agent.
• Parser – translates text messages from the GB04 to Java objects.
• Agent – here goes the user logic.
• IDE – plug-in for NetbeansTM development environment. Provides

support for coding and debugging the agent.

1. Implementation
Example use of sensomotoric primitives

// 1) do you see enemy? -> start shooting / hunt the enemy
if (memory.getSeeAnyEnemy() &&

memory.hasAnyLoadedWeapon()) { statePursue(); return; }
// 2) are you shooting? -> stop shooting, you've lost your target
if (memory.getIsShooting()) { body.stopShoot(); return; }
// 3) are you being shot? -> turn around - try to find your enemy
if (memory.getIsBeingDamaged()) { body.turnHorizontal(355); return; }

3. Validation
Validate the implementation of the IVA in a different conditions, log the course
of tests and evaluate the results with a third-party statistical software.

rule "Hunter sees White Rabbit"
 when
 hunterMemory : AgentMemory(name == “Hunter”)
 eval (hunterMemory.seeEnemy(globals.get("whiteRabbit").getMemory().getUnrealID))

 then
 if (hunterMemory.isShooting())
 log.info("Hunter sees White Rabbit and is shooting.")
 else
 log.severe("Hunter sees White Rabbit and is NOT shooting.")
end

 2. Debugging and Tuning
Fig. 3 IDE in work

List of
servers

and
running

bots

List of
opened
projects

Properties
of running
bot: name,
position,

weapon ...

The bot
can be

controlled
by the
arrows

Coloured
log

viewers

Code completion
for Java provided

by NetbeansTM IDE

The map can be changed, a
game replay can be saved, items

can be added to the bot etc.

Introspection of annotated
variables

Fig. 4 Screenshot of the Unreal Tournament 2004
showing some GameBots 2004 debugging features

Raytracing

NavPoint
labels

Visualisation
of navigation

mesh

Fig. 2 Pogamut architecture

References:

Fig. 1 An example
of a bot from

Unreal
TournamentTM

Introduction
We have created a platform for easy prototyping of
virtual human behavior in complex virtual world of
Unreal Tournament 2004.

Our goal
To fill the gap on the field of educational tools for virtual
humans development.

Who is it for?
Students and researchers who are interested in
modeling of behavior of virtual humans.

Number of example bots (eg. Khepera like bot from Fig. 4) is included in the Pogamut installer.

