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Main contribution
Pogamut provides an IDE and an 
auxiliary library for fast creation 
of IVA's behavior in virtual world 
of Unreal TournamentTM 2004[1]. 
Pogamut uses new version of 
popular GameBots[2] interface 
and integrates a reactive planner 
POSH[3].

Pogamut features and development
Pogamut supports three main stages of IVA's creation. Each stage 
is supported by following features:

 Implementation – core Java library of sensomotoric primitives 
• Memory that stores sensory information
• Functional primitives for the control of IVA’s body 
• Inventory to manage items picked up by the agent
• Methods for moving around the map that solve             
  navigation issues, including A*

Pogamut currently supports development in:
● Java, POSH[3], Python 
● and possibly more languages with Java Script API binding

 Debugging and tuning – Plugin for NetbeansTM  IDE
● List of Unreal Tournament servers
● List of running IVAs
● Introspection of IVA's variables
● Log viewers – logs allow filtering   
● Bot remote control – arrows allow you to move the IVA
● Server control – change map, save replay of the game etc.

 Validation – binding with JBoss RulesTM [4] rule engine
● Experiments defined by declarative rules are suitable for testing 
  IVA's behavior in different scenarios
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Architecture
• Unreal TournamentTM 2004 – commercial game used as a virtual 

world. It is extensible and contains environmental editor.
• Gamebots 2004 – built-in server in the UT04, which export 

information from UT04 for the Agent. 
• Parser – translates text messages from the GB04 to Java objects.
• Agent – here goes the user logic.
• IDE – plug-in for NetbeansTM development environment. Provides 

support for coding and debugging the agent.

1. Implementation
Example use of sensomotoric primitives

// 1) do you see enemy? -> start shooting / hunt the enemy
if (memory.getSeeAnyEnemy() && 

memory.hasAnyLoadedWeapon()) { statePursue(); return; }
// 2) are you shooting? -> stop shooting, you've lost your target
if (memory.getIsShooting()) { body.stopShoot(); return; }
// 3) are you being shot? -> turn around - try to find your enemy
if (memory.getIsBeingDamaged()) { body.turnHorizontal(355); return; }

3. Validation
Validate the implementation of the IVA in a different conditions, log the course 
of  tests and evaluate the results with a third-party statistical software.

rule "Hunter sees White Rabbit"
        when 
               hunterMemory : AgentMemory( name == “Hunter” )
              eval ( hunterMemory.seeEnemy(globals.get("whiteRabbit").getMemory().getUnrealID) )     
    
        then
                if (hunterMemory.isShooting())
                    log.info("Hunter sees White Rabbit and is shooting.")
                else
                    log.severe("Hunter sees White Rabbit and is NOT shooting.")
end

 2. Debugging and Tuning
Fig. 3  IDE in work
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Introduction
We have created a platform for easy prototyping of 
virtual human behavior in complex virtual world of 
Unreal Tournament 2004. 

Our goal
To fill the gap on the field of educational tools for virtual 
humans development.

Who is it for?
Students and researchers who are interested in 
modeling of behavior of virtual humans.

Number of example bots (eg. Khepera like bot from Fig. 4) is included in the Pogamut installer. 


